Band structure anisotropy effects on the hole transport transient in 4H-SiC
نویسندگان
چکیده
We study the role of band structure anisotropy on the hole transport in 4H–SiC during the transient regime. For the same strength of the applied electric field, the drift velocity overshoot of the hole is stronger and reaches steady state later when the field is applied perpendicular to the c-axis, than when the field is in the c-axis direction. In both cases, the time for the hole drift velocity and mean energy to reach steady state is under 50 fs, depending on the electric field strength, and are one order of magnitude shorter than the time for the electron drift velocity and mean energy to attain the steady state. q 2003 Published by Elsevier Science Ltd.
منابع مشابه
Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells
Abstract: Perovskite solar cells have become an attractive subject in the solar energydevice area. During ten years of development, the energy conversion efficiency has beenimproved from 2.2% to more than 22%, and it still has a very good potential for furtherenhancement. In this paper, a numerical model of the perovskite solar cell with thestructure of glass/ FTO/ TiO2/...
متن کاملCarrier Lifetime Relevant Deep Levels In SiC
Silicon carbide (SiC) is currently under development for high power bipolar devices such as insulated gate bipolar transistors (IGBTs). A major issue for these devices is the charge carrier lifetime, which, in the absence of structural defects such as dislocations, is influenced by point defects and their associated deep levels. These defects provide energy levels within the bandgap and may act...
متن کاملModeling and Characterization of 4h-sic Mosfets: High Field, High Temperature, and Transient Effects
Title of Dissertation: MODELING AND CHARACTERIZATION OF 4H-SIC MOSFETS: HIGH FIELD, HIGH TEMPERATURE, AND TRANSIENT EFFECTS Siddharth Potbhare, Doctor of Philosophy, 2008 Directed by: Professor Neil Goldsman Department of Electrical and Computer Engineering We present detailed physics based numerical models for characterizing 4HSilicon Carbide lateral MOSFETs and vertical power DMOSFETs for hig...
متن کاملLinköping University Post Print Study of luminescent centers in ZnO nanorods catalytically grown on 4H-p-SiC
High quality ZnO nanorods (NRs) were grown by the vapour-liquid-solid (VLS) technique on 4H-p-SiC substrates. Heterojunction light emitting diodes (LEDs) were fabricated. Electrical characterisation including deep level transient spectroscopy (DLTS) complemented by photolumincence (PL) are used to characterize the heterojunction LEDs. On contrary to previously published results on n-ZnO thin fi...
متن کاملElectron Transport Simulations and Band Structure Calculations of New Materials for Electronics: Silicon Carbide and Carbon Nanotubes
Title of dissertation: ELECTRON TRANSPORT SIMULATIONS AND BAND STRUCTURE CALCULATIONS OF NEW MATERIALS FOR ELECTRONICS: SILICON CARBIDE AND CARBON NANOTUBES. Gary Pennington, Doctor of Philosophy, 2003 Dissertation directed by: Professor Neil Goldsman Department of Electrical Engineering Silicon carbide (SiC) and carbon nanotubes (CNTs) are two materials which have promising potential in electr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microelectronics Journal
دوره 34 شماره
صفحات -
تاریخ انتشار 2003